Теория магнитостриктивных датчиков
Страница 1

Магнитострикция — это свойство некоторых кристаллических, обычно ферромагнитных материалов, таких как железо, никель и кобальт, изменять размер и (или) форму при взаимодействии с внешним магнитным полем. Явление изменения размера и формы материала в магнитном поле представляет собой магнитостриктивный эффект.

Явление магнитострикции было открыто Дж. Джоулем в 1842 году. Наибольших значений магнитострикция достигает в ферро и ферримагнетиках (Fe, Ni, Со, Gd, Tb и других, а также ряде сплавов и ферритах). Эта характеристика материала не изменяется со временем.

Считается, что материал характеризуется положительной магнитострикцией, если он расширяется при помещении в магнитное поле, и отрицательной магнитострикцией, если размеры материала уменьшаются. Средняя величина магнитострикции в основных металлах и простых магнитострикционных сплавах небольшая — порядка 1 мкм/м.

Рис. 23. Иллюстрация теории и принципа действия магнитостриктивных преобразователей: а, б — иллюстрация магнитостриктивного эффекта в ферромагнитном стержне под действием внешнего магнитного поля B: а — хаотичное распределение магнитных моментов доменов в отсутствие поля; б — упорядочение магнитных моментов доменов при намагничивании внешним полем; L0 — начальная длина стержня при B = 0; ΔL— удлинение при намагничивании; в, г— иллюстрация магнитостриктивного эффекта в ферромагнитном проводнике с током I; в— распределение магнитных моментов доменов под действием магнитного поля тока B; г— скручивание магнитных моментов доменов под действием аксиального магнитного поля: 1— доменный стержень; 2— аксиальный постоянный магнит; д— измерительный принцип магнитостриктивных датчиков MTS: 1— волновод; 2— постоянный магнит-цель; 3— измерительная лента; 4— сенсорная обмотка; 5— постоянный магнит, смещающий обмотку; 6— изоляционная трубка; 7— демпфер; I— импульсный ток; B— скручивающий импульс (направление распространения импульса показано стрелками); е— типичный магнитостриктивный датчик абсолютного линейного положения: 1— сенсорный стержень (волновод в защитной трубке); 2— постоянный магнит-цель; 3— электронный блок — магнитостриктивный датчик и интегрированная электроника обработки сигнала в корпусе; 4— терминалы преобразователя; 5— элемент крепления устройства

Для того чтобы объяснить явление магнитострикции, ферромагнитный материал рассматривается как физическая совокупность доменов — областей из многих атомов — малых постоянных магнитов, характеризующихся магнитными моментами. В отсутствие магнитного поля магнитные моменты доменов в пространстве располагаются хаотично. При намагничивании материала домены выстраиваются вдоль своих легких осей намагниченности так, что магнитные моменты стремятся к параллельности друг другу и внешнему магнитному полю (рис. 23а, б).

На рис. 23б показано, что напряженность магнитного поля H при B>0 вызывает изменение размеров тела (длины стержня L0) вследствие выравнивания магнитных моментов доменов.

Таким образом, магнитостриктивные материалы преобразуют магнитную энергию в механическую, и наоборот. Намагничивание вызывает механическое напряжение магнитостриктивного материала, которое и приводит к изменению длины.

Поскольку приложение магнитного поля вызывает механическое напряжение, которое изменяет физические свойства магнитостриктивного материала, существует и обратный магнитостриктивный эффект, называемый эффектом Виллари: приложение внешней силы, образующей напряжение в магнитостриктивном материале (растяжение, кручение, изгиб и т. д.), изменяет магнитные свойства (магнитную проницаемость) материала.

Это двунаправленное сочетание магнитных и механических свойств обеспечивает преобразовательную способность и используется для создания как магнитостриктивных датчиков, так и исполнительных устройств.

Для создания магнитостриктивных датчиков положения применяются и прямой магнитостриктивный эффект, и эффект Виллари.

Магнитостриктивный эффект, представляющий собой взаимодействие внешнего магнитного поля с доменами, зависит от свойств материала — состава и способов обработки сплава (термического отжига, холодной обработки), а также от напряженности магнитного поля. Управление упорядочением доменов может быть оптимизировано правильным подбором перечисленных свойств и параметров.

Страницы: 1 2 3

Интересные публикации:

Особенности посева овса трактором Т-150
Для получения дружных и полных всходов зерновых колосовых культур необходимо посеять семена в оптимальные сроки с заданной нормой высева и заделать не менее 80% семян на требуемую глубину и во влажный слой почвы при одновременном внесении удобрений. 1.1. Показатели ...

Оптимизация транспортной системы региона на основе логистического подхода к управлению
Использование достижений логистики на транспорте - является залогом повышения эффективности отечественного транспортного комплекса и активизации его интеграции в мировую транспортную систему. Следует отметить, что в последние годы транспорт, обладая колоссальным стратегическим ресурсом ...

Техническое обслуживание сельскохозяйственных машин
В 2006 году происходило реформирование сельскохозяйственного производства. Менялась форма хозяйствования. Для решения всего комплекса вопросов технического обеспечения агропромышленного комплекса России особое значение приобретает развитие и совершенствование подготовки квалифицирова ...