В настоящее время проблема надежности узлов и систем автомобиля очень актуальна. Надежность рулевого привода является одной из составляющих надежности автомобиля в целом.
Шарнирные соединения рулевых тяг автомобилей являются основным элементами, регламентирующими надёжность рулевого привода [2]. Рабочие процессы в них характеризуются значительным количеством циклов относительного скольжения элементов шарнира. При этом особую важность приобретает фактор, учитывающий переход трения покоя в трение скольжения, когда преодолеваются "точки покоя". Последнее обстоятельство является причиной увеличения интенсивности изнашивания шарнира, несмотря на некоторое её ослабление из-за нестационарности процесса нагружения рулевого привода.
Для автомобилей с независимой передней подвеской нагружение рулевых шарниров определяется тремя факторами: рулевыми воздействиями водителя, колебаниями колёс относительно оси поворотной стойки и колебаниями подвески. При этом скорость движения способствует увеличению интенсивности возбуждений и при возрастании становится фактором, определяющим частоту и амплитуду колебаний колёс.
Из практики технической эксплуатации автомобилей известно, что наибольший износ имеют шарнирные соединения рычагов поворотных цапф и боковых рулевых тяг (крайние рулевые шарниры). Основная причина в том, что эти шарниры соединяют без упругих элементов неподрессоренную массу колёсного узла передней подвески и подрессоренную массу кузова. Это определяет интенсивные динамические нагрузки на элементы шарнира, частично воспринимаемые его пружиной.
Анализируя пространственное скольжение элементов рулевых шарниров, следует отметить, что характеристикой рабочих процессов являются путь трения и скорость относительного скольжения. Используя методику Фоллерта Людера для шарниров автомобилей МАЗ, и рассмотрев дополнительно процесс относительного перемещения элементов шарнира от колебаний подвески для исследуемых моделей, определим суммарный путь трения, отнесённый к площади трения с диаметром, равным диаметру шарового пальца, на 1000 км пробега для автомобилей ВАЗ.
Путь трения в случае имитации процесса основных угловых перемещений управляемых колёс случайной последовательностью, имеющей место от рулевых воздействий водителя, может быть определён:
, |
(20) |
где - среднестатистический угол поворота шарового пальца, град;
d - диаметр шарового пальца, мм.
Путь трения в случае имитации процесса основных угловых перемещений управляемых колёс гармоническим процессом, имеющем место при колебаниях управляемых колёс относительно оси поворотной стойки и при колебаниях передней подвески, может быть определён :
, |
(21) |
где n - число колебаний на 1 км пути;
- угол размаха, град.
Так, относительная величина пути трения при движении на булыжном шоссе со скоростью 8,4 м/с определена следующим образом:
а) от рулевых воздействий водителя:
;
б) от колебаний колес относительно оси поворотной стоки:
;
в) от колебаний передней подвески:
.
Результаты расчёта сведены в таблице 1. Исходные данные взяты из работы Гольда Б.В. [3], получены экспериментально.
Характеристикой рабочих процессов в рулевом шарнире является также, скорость относительного скольжения его элементов. Известно [6], что главными механизмами нарушения работоспособности рулевых шарниров являются окислительное, абразивное изнашивание и усталостное выкрашивание поверхностей трения. Кинематической характеристикой этих механизмов является средняя скорость скольжения шарового пальца в наконечнике рулевой тяги:
. |
(22) |